WhatsHap: fast and accurate read-based phasing
نویسندگان
چکیده
Correspondence: [email protected] Center for Bioinformatics, Saarland University, Campus E2.1, 66123, Saarbrücken, Germany Max Planck Institute for Informatics, Saarbrücken, Germany Full list of author information is available at the end of the article †Equal contributor Abstract Read-based phasing allows to reconstruct the haplotype structure of a sample purely from sequencing reads. While phasing is a required step for answering questions about population genetics, compound heterozygosity, and to aid in clinical decision making, there has been a lack of an accurate, usable and standards-based software. WhatsHap is a production-ready tool for highly accurate read-based phasing. It was designed from the beginning to leverage third-generation sequencing technologies, whose long reads can span many variants and are therefore ideal for phasing. WhatsHap works also well with second-generation data, is easy to use and will phase not only SNVs, but also indels and other variants. It is unique in its ability to combine read-based with genetic phasing, allowing to further improve accuracy if multiple related samples are provided.
منابع مشابه
Read-based phasing of related individuals
MOTIVATION Read-based phasing deduces the haplotypes of an individual from sequencing reads that cover multiple variants, while genetic phasing takes only genotypes as input and applies the rules of Mendelian inheritance to infer haplotypes within a pedigree of individuals. Combining both into an approach that uses these two independent sources of information-reads and pedigree-has the potentia...
متن کاملSelecting Reads for Haplotype Assembly
Haplotype assembly or read-based phasing is the problem of reconstructing both haplotypes of a diploid genome from next-generation sequencing data. This problem is formalized as the Minimum Error Correction (MEC) problem and can be solved using algorithms such as WhatsHap. The runtime of WhatsHap is exponential in the maximum coverage, which is hence controlled in a pre-processing step that sel...
متن کاملWhatsHap: Weighted Haplotype Assembly for Future-Generation Sequencing Reads
The human genome is diploid, which requires assigning heterozygous single nucleotide polymorphisms (SNPs) to the two copies of the genome. The resulting haplotypes, lists of SNPs belonging to each copy, are crucial for downstream analyses in population genetics. Currently, statistical approaches, which are oblivious to direct read information, constitute the state-of-the-art. Haplotype assembly...
متن کاملWhatsHap: Haplotype Assembly for Future-Generation Sequencing Reads
The human genome is diploid, that is each of its chromosomes comes in two copies. This requires to phase the single nucleotide polymorphisms (SNPs), that is, to assign them to the two copies, beyond just detecting them. The resulting haplotypes, lists of SNPs belonging to each copy, are crucial for downstream analyses in population genetics. Currently, statistical approaches, which avoid making...
متن کاملTowards High-performance Haplotype Assembly for Future Sequencing
The problem of Haplotype Assembly is an essential step in human genome analysis. Being the well known MEC model for its solution NP-hard, it is currently addressed by using algorithms that grow exponentially with the length of DNA fragments obtained by the sequencing process. Technological improvements will reduce fragmentation, increase fragment length and make such computational costs worst. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016